

Formeln

Vorbemerkung

- Die Darstellung von mathematischen Formeln ist einer der Grundpfeiler (und sogar Grund) von TeX bzw. LaTeX.
- Dementsprechend gibt es auch hier unendliche viele Beispiele und Spezialfälle und Listen von Symbolen und Befehlen.
- Wie zuvor werden wir uns auf das Verständnis der Grundlagen konzentrieren.
- Alle Liste und Spezialfälle sind im Internet zum Nachschlagen verfügbar.

Pakete

- LaTeX hat schon einen Grundsatz an mathematischen Funktionen.
- amsmath und amssymb sind die Standard-Pakete die zur mathematischen Darstellung zusätzlich geladen werden. Wir werden diese immer einsetzen.
- AMS steht für American Mathematical Society.
- Eine sehr gute Quelle an Informationen bei Fragen ist die Original-Dokumentation der Pakete:

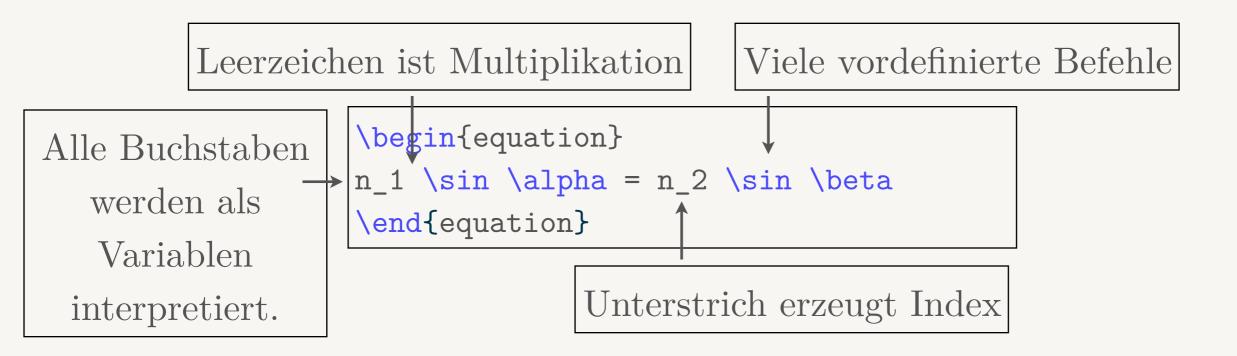
ftp://ftp.ams.org/pub/tex/doc/amsmath/amsldoc.pdf

math-Umgebung

- Die math-Umgebung schaltet LaTeX in den Mathe-Modus.
- Innerhalb dieser Umgebung gelten ganz andere Formatierungsregeln als im normalen Text.
- Zwei Möglichkeiten:
 - ▶ Entweder im Fließtext mit \$...\$
 - Der als freistehende Gleichung mit diversen Umgebungen.
- Wir behandeln beide Möglichkeiten.

Mathe mit der equation-Umgebung

equation


- Eine einzelne Gleichung wird mit der Umgebung equation angegeben.
- Die Gleichung wird dann nicht im Fließtext sondern freistehend formatiert.

```
\begin{equation}
n_1 \sin \alpha = n_2 \sin \beta
\end{equation}
```

$$n_1 \sin \alpha = n_2 \sin \beta \tag{1}$$

Einige Grundregeln

Nummerierung

Wenn nicht nummeriert werden soll wird die Umgebung equation*
gebraucht.

```
\begin{equation}
n_1 \sin \alpha = n_2 \sin \beta
\end{equation}

\begin{equation*}
n_1 \sin \alpha = n_2 \sin \beta
\end{equation*}
```

```
n_1 \sin \alpha = n_2 \sin \beta \tag{1}
n_1 \sin \alpha = n_2 \sin \beta
```


Standard-Symbole

 Diese Symbole und Operatoren können direkt eingetippt werden.

```
\begin{equation}
+ - = ! / ( ) [ ] < > | ' :
\end{equation}
```


Multiplikation

```
\begin{equation}
a\cdot b, \quad a\times b
\end{equation}
```

- \cdot
- \times

Griechische Buchstaben

- Griechische Buchstaben werden einfach ausgeschrieben.
- Große griechische
 Buchstaben werden groß geschrieben.

```
\begin{equation}
\alpha, \beta, \gamma, \delta, \epsilon
(\varepsilon), \dots
\end{equation}
```

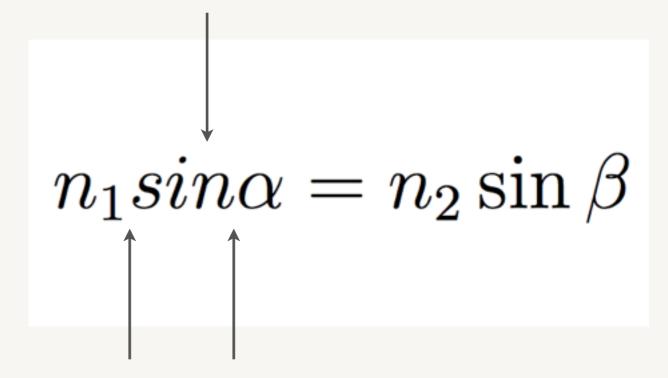
```
\begin{equation}
\Gamma, \Delta, \Theta, \Lambda, \dots
\end{equation}
```

```
\alpha, \beta, \gamma, \delta, \epsilon(\varepsilon), \dots

\Gamma, \Delta, \Theta, \Lambda, \dots
```


Griechische Buchstaben

Greek Letters								
Symbol	Script	Symbol	Script					
${f A}$ and ${f lpha}$	A and \alpha	N and ν and λ nu						
${f B}$ and eta	B and \beta	\equiv and ξ \xi and \xi						
Γ and γ	\Gamma and \gamma	O and O o and \omicron						
Δ and δ	\Delta and \delta	\prod , π and ϖ \Pi, \pi and \varpi						
E , ϵ and $arepsilon$	E, \epsilon and \varepsilon	P, $ ho$ and $arrho$	P, \rho and \varrho					
Z and ζ	z and \zeta	\sum , σ and ς \Sigma, \sigma and \varsigma						
${\bf H}$ and η	H and \eta	T and $ au$						
Θ , θ and ϑ	\Theta, \theta and \vartheta	Υ and υ	\Upsilon and \upsilon					
] and ι	I and \iota	Φ , ϕ , and $arphi$	\Phi, \phi and \varphi					
K , κ and \varkappa	K, \kappa and \varkappa	X and χ	x and \chi					
Λ and λ	\Lambda and \lambda	Ψ and ψ	\Psi and \psi					
${ m M}$ and μ	м and \mu	Ω and ω	\Omega and \omega					



Funktionen

- Schreibt man einfach sin für Sinus dann wird jeder Buchstabe als Variable interpretiert.
- Deswegen gibt es für die Standardfunktionen eigene Befehle.

```
\begin{equation}
n_1 sin \alpha = n_2 \sin \beta
\end{equation}
```

Jeder Buchstabe kursiv

Keine Lücke wegen Multiplikation

Funktionen

Trigonometric Functions											
Symbol	Script	Symbol	Script	Symbol	Script	Symbol	Script				
sin	\sin	arcsin	\arcsin	sinh	\sinh	sec	\sec				
cos	\cos	arccos	\arccos	cosh	\cosh	csc	\csc				
tan	\tan	arctan	\arctan	tanh	\tanh						
cot	\cot	arccot	\arccot	coth	\coth						

Auch für \log und \ln.

http://en.wikibooks.org/wiki/LaTeX/Mathematics#List_of_Mathematical_Symbols

Hoch- und tiefgestellt

- Die Befehle _ und ^ stellen tief bzw. hoch.
- Das Argument muss mit {...} geklammert werden.
- Wird die Klammer weggelassen werden die nächsten beiden Symbole genommen (das kann lustig aussehen).
- Verschiedene Kontexte:
 - an einer Variablen
 - an einem Operator
 - ▶ an einer Funktion
- Die Befehle können geschachtelt werden.

```
\begin{equation}
a^{b^c} = a^{b\cdot c}
\end{equation}
```

$$a^{b^c} = a^{b \cdot c}$$

Hoch- und tiefgestellt

```
\begin{equation}
a^{b^c} = a^{b\cdot c}
\end{equation}
```

```
\begin{equation}
f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3
\dots
\end{equation}
```

```
\begin{equation}
\sin(x) = \sum_{n=0}^{\infty} \dots
\end{equation}
```

```
\begin{equation}
V \propto T \bigg|_P
\end{equation}
```

$$a^{b^c} = a^{b \cdot c}$$

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \dots$$

$$\sin(x) = \sum_{n=0}^{\infty} \dots$$

$$V \propto T \bigg|_{P}$$

Brüche

- Bruch: engl. fraction.
- Der Befehl \frac hat zwei Argumente:
 - Nenner
 - Zähler
- Beide werden mit {...} umschlossen.
- Brüche können auch geschachtelt werden.

```
\begin{equation}
U(\nu, T) = \frac{8\pi h\nu^3}{c^3}
\frac{1}{\mathrm{e}^{h\nu/kT} - 1}
\end{equation}
```

$$U(\nu, T) = \frac{8\pi h\nu^3}{c^3} \frac{1}{e^{h\nu/kT} - 1}$$

```
\begin{equation}
U(\nu, T) = \frac{8\pi h\nu^3}{c^3}
\frac{1}{\mathrm{e}^{{\frac{h\nu}{kT}}} -
1}
\end{equation}
```

$$U(\nu, T) = \frac{8\pi h \nu^3}{c^3} \frac{1}{e^{\frac{h\nu}{kT}} - 1}$$

Einige Operatoren

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} \mp \dots$$

• Summe: \sum

• Integral: \int

• Limes: \lim

$$F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

$$\lim_{x \to \infty} \exp(-x) = 0$$

HSD

Summe

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} \mp \dots$$

$$F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

```
\lim \exp(-x) = 0
x \rightarrow \infty
```

```
\begin{equation}
\sin(x) = \sum_{n=0}^{\sin y}
(-1)^n \frac{x^{2n+1}}{(2n+1)!} =
\frac{x}{1!} - \frac{x^3}{3!} +
\frac{x^5}{5!} \neq \det
\end{equation}
```

HSD

Integral

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} \mp \dots$$

$$F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

$$\lim_{x \to \infty} \exp(-x) = 0$$

Limes

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} \mp \dots$$

$$F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

$$\lim_{x \to \infty} \exp(-x) = 0$$

\begin{equation}
\lim_{x \to \infty} \exp(-x) = 0
\end{equation}

Integralgrenzen

- Beim Integral können mit den üblichen Befehlen ^ und _ die Grenzen definiert werden.
- Die stehen dann nicht genau über und unter dem Integralzeichen.
- Dafür gibt es den Befehl
 \limits, der dann mit ^ und
 gebraucht wird.

```
\begin{equation}
F(\omega) = \frac{1}{\sqrt{2\pi}}
\int_{-\infty}^{\infty} f(t)
\mathrm{e}^{-i\omega t}\,\mathrm{d}
t
\end{equation}
```

$$F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

$$F(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t) e^{-i\omega t} dt$$

Ableitung

- Ableitung ist einfach ein Bruch.
- Der Differentialoperator d wird nicht kursiv gesetzt!
- \mathrm wählt aus der aktuellen Font-Familie die römische Variante aus (also nicht *italic*).
- Das jedes mal zu tippen ist zu aufwändig, also...

```
\begin{equation}
-i\hbar \frac{\mathrm{d}}{\mathrm{d}t}
\Psi = H \Psi
\end{equation}
```

$$-i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \Psi = H \Psi$$

Ableitungs-Befehl

```
\newcommand{\ddt}{\frac{\mathrm{d}}}
{\mathrm{d}t}}
\begin{equation}
-i\hbar \ddt \Psi = H \Psi
\end{equation}
```

• ... wird ein eigener Befehl definiert.

$$-i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \Psi = H \Psi$$

Höhere Ableitungen

Zahlen im Befehls-Namen nicht möglich

\newcommand{\dsqdt}{\frac{\mathrm{d}}
^2}{\mathrm{d}t^2}}
\begin{equation}
a(t) = \dsqdt x(t)
\end{equation}

 Das geht auch mit höheren Ableitungen.

$$a(t) = \frac{\mathrm{d}^2}{\mathrm{d}t^2} x(t)$$

Das war gut. Wie geht optimal?

Ableitung mit Argument

Optimal: in der
Befehlsdefinition wird die abhängige Größe als
Argument übergeben.

```
\newcommand{\diff}[1]
{\frac{\mathrm{d}}{\mathrm{d}#1}}
\begin{equation}
-i\hbar \diff{t} \Psi = H \Psi
\end{equation}
```

$$-i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \Psi = H \Psi$$

Ableitung mit Argument

- Noch lustiger wird es bei höheren Ableitungen.
- Dann muss allerdings beim Gebrauch des Befehls aufgepasst werden...

```
\newcommand{\diff}[2]
{\frac{\mathrm{d}^{#2}}{\mathrm{d}}
#1^{#2}}}
\begin{equation}
-i\hbar \diff{t}{} \Psi = H \Psi
\end{equation}
\begin{equation}
a(t) = \mathbf{diff}\{t\}\{2\}
\end{equation}
```

Leeres Argument!

Partielle Ableitungen

Bei partiellen Ableitungen wird der
Differentialoperator durch \partial ersetzt.

```
\begin{equation}
\frac{1}{c^2}\frac{\pic{\pic^2}}
{\partial t^2} \vec E(\vec x, t) =
\Delta \vec E(\vec x, t)
\end{equation}
```

$$\frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{E}(\vec{x}, t) = \Delta \vec{E}(\vec{x}, t)$$

Differentialoperator alleine

- Der Differentialoperator alleine sollte mit einem kleinen Abstand zum Rest stehen.
- Hierzu gebrauchen wir den Abstands-Befehl \,, den wir schon von Einheiten her kennen.

Differentialoperator alleine

```
\begin{equation}
\mathrm{d}U = \mathrm{d}Q - p\,\mathrm{d}V
\end{equation}
```

$$dU = dQ - p \, dV$$

$$dU = dQ - pdV$$

```
\begin{equation}
\mathrm{d}U = \mathrm{d}Q - p\mathrm{d}V
\end{equation}
```


Klammern

Runde (...) und eckige
[...] Klammern und
Betrag |...| können
direkt eingegeben werden.

Geschweifte Klammernmüssen ,escaped' werden: \{ und \}

```
( [ \{ |\ldots| \} ] )
```


Klammergrößen Automatisch einstellen

- LaTeX kann die Größe der Klammern selber bestimmen.
- Dazu gibt es die Befehle\left und \right.
- Diese müssen paarweise gebraucht werden, sonst gibt es eine Fehlermeldung.

```
\begin{equation}
R_{||} = r^2_{||} = \left ( \frac{n_2} \cos \alpha - n_1 \sqrt{1 - \left[ \frac{n_1}{n_2} \sin \alpha \right ]^2} \frac{n_1}{n_2} \sin \alpha + n_1 \sqrt{1 - \left[ \frac{n_1}{n_2} \sin \alpha \right ]^2} \right ) \right | ^2} } \right |
\end{equation}
```

$$R_{||} = r_{||}^2 = \left(\frac{n_2 \cos \alpha - n_1 \sqrt{1 - \left[\frac{n_1}{n_2} \sin \alpha\right]^2}}{n_2 \cos \alpha + n_1 \sqrt{1 - \left[\frac{n_1}{n_2} \sin \alpha\right]^2}}\right)$$

Klammergrößen Manuell einstellen

- Manchmal gibt die automatische Bestimmung kein gutes Ergebnis.
- Klammern können auch manuell auf eine bestimmte Größe gesetzt werden.
- Dazu gibt es wie bei Fonts -Größenbefehle:

```
big (
big (
big (
bigg (
```

```
\begin{equation}
\big ( \Big [ \bigg \{ \Bigg | \dots
\Bigg | \bigg \} \Big ] \big )
\end{equation}
```


Abstände

- Da LaTeX Whitespaces ,weg'interpretiert muss Leerraum gezielt erzeugt werden.
- Basis ist der Befehl \quad: ein Leerzeichen.
- Es ist so breit wie der Font hoch ist (z.B. 12pt).
- \qquad liefert... zwei
 Leerzeichen!

```
\begin{equation}
\begin{split}
(\quad) \\
(\qquad)
\end{split}
\end{equation}
```


Kleine Abstände

• Kleinere Abstände werden mit diversen Befehlen erzeugt:

```
\begin{equation}
\begin{split}
() \\
(\,) \\
(\:) \\
(\;)
\end{split}
\end{equation}
```


Mathe im Textfluss

Im Textfluss

• Der Mathe-Modus kann auch direkt im Fließtet gebraucht werden.

Die Schwankungsbreite \$\Delta N\$
einer Poisson-Verteilung für diskrete
Ereignisse ist grade die Wurzel der
Anzahl selber, also \$\Delta N
\approx \sqrt{N}\$.

Die Schwankungsbreite ΔN einer Poisson-Verteilung für diskrete Ereignisse ist grade die Wurzel der Anzahl selber, also $\Delta N \approx \sqrt{N}$.

Statt der equationUmgebung werden die
Mathe-Befehle von \$...\$
umschlossen.

Echtes' Beispiel:

http://www.feynmanlectures.caltech.edu/III_01.html

Aufgabe

- Gehen Sie im Netz zum Beispiel der Feynman-Lecture.
- Schauen Sie sich den Seitenquellcode an.
- Gute Stelle: der Absatz vor Gl. 1.2.

http://www.feynmanlectures.caltech.edu/III_01.html

Mehrzeilige Mathe

Mehrzeilige Mathe-Ausdrücke

- Mehrzeilige Mathe-Ausdrücke kommen bei Herleitung häufig vor. Es gibt sehr viele Möglichkeiten dies umzusetzen.
- Relevante Fragen:
 - Soll jede Zeile eine eigene Nummerierung haben (und damit vor allem referenzierbar sein)?
 - Muss ein Teil der verschiedenen Zeilen aneinander ausgerichtet werden?

eqnarray

- Die Standard-Methode ist die Umgebung eqnarray.
- In ihr kann ein Zeilenumbruch
 (\\) gebraucht werden.
- Alle Zeilen werden nummeriert.
- Die Zeilen werden rechtsbündig gesetzt.

```
\begin{eqnarray}
a = b \\
c = d \\
e = f
\end{eqnarray}
```

```
a = b (28)

c = d (29)

e = f (30)
```


eqnarray*

Wie bei der equationUmgebung gibt es auch bei eqnarray eine Version mit
*.

```
• Dann wird keine Zeile nummeriert.
```

```
\begin{eqnarray*}
a = b \\
c = d \\
e = f
\end{eqnarray*}
```

```
a=b (25)

c=d (26)

e=f (27)

a=b (27)
```


\notag

 Es können auch einzelne Zeilen von der Nummerierung mit dem \notag-Befehl ausgeschlossen werden.

```
\begin{eqnarray}
a = b \\
c = d \notag \\
e = f
\end{eqnarray}
```

```
a = b
c = d
e = f
(28)
```


eqnarray ohne Ausrichtung

- Bei ungleichmäßigen Zeilen sieht das Standard-Format allerdings nicht mehr übersichtlich aus.
- Gewünscht ist die Zeilen an den Gleichheitszeichen auszurichten.

```
\begin{eqnarray}
V = V_0 + \Delta V \\
= V_0 + V_0\cdot \gamma_0\cdot \Delta
T\\
= V_0(1 + \gamma_0 [T - T_0]), \quad
\mathrm{mit}\quad \gamma_0 = \frac{1}{T_0}, \quad (T_0 \mathrm{ in K})
\end{eqnarray}
```

$$V = V_0 + \Delta V \tag{25}$$

$$= V_0 + V_0 \cdot \gamma_0 \cdot \Delta T \tag{26}$$

$$= V_0(1 + \gamma_0[T - T_0]), \quad \text{mit} \quad \gamma_0 = \frac{1}{T_0}, \quad (T_0 \text{ in K})$$
 (27)

align

- Mit der align-Umgebung kann genau das erreicht werden.
- Das Symbol & dient als
 Orientierungsmarke, an dem die Zeilen ausgerichtet werden.
- Jede Zeile wird nummeriert.
- Es gibt auch align*.

```
\begin{align}
V &= V_0 + \Delta V \\
&= V_0 + V_0\cdot \gamma_0\cdot
\Delta T\\
&= V_0(1 + \gamma_0 [T - T_0]), \quad
\text{mit}\quad \gamma_0 = \frac{1}
{T_0}, \quad (T_0 \text{ in K})
\end{align}
```

$$V = V_0 + \Delta V$$
 (31)
= $V_0 + V_0 \cdot \gamma_0 \cdot \Delta T$ (32)
= $V_0 (1 + \gamma_0 [T - T_0])$, mit $\gamma_0 = \frac{1}{T_0}$, $(T_0 \text{ in K})$ (33)

split

- Wenn nur eine einzige
 Nummerierung für den gesamten
 Ausdruck gewünscht ist kann split helfen.
- Die Umgebung split wird innerhalb der equation-Umgebung gebraucht.
- Dann kann auch in equation mit \
 \ umgebrochen werden.
- Die Zeilen können mit & ausgerichtet werden.

```
\begin{equation}
\begin{split}
V &= V_0 + \Delta V \\
&= V_0 + V_0\cdot \gamma_0\cdot
\Delta T\\
&= V_0(1 + \gamma_0 [T - T_0]), \quad
\mathrm{mit}\quad \gamma_0 = \frac{1}{T_0}, \quad (T_0 \mathrm{ in K})
\end{split}
\end{equation}
```

$$V = V_0 + \Delta V$$

$$= V_0 + V_0 \cdot \gamma_0 \cdot \Delta T$$

$$= V_0 (1 + \gamma_0 [T - T_0]), \quad \text{mit} \quad \gamma_0 = \frac{1}{T_0}, \quad (T_0 \text{ in K})$$
(34)

Querverweise

\label und \ref

- Die Zeilen werden nummeriert um im Text referenziert werden zu können.
- Dies geschieht natürlich mit \label und \ref.

\label und \ref

```
Um Querverweise zu erzeugen wird -- wie gewohnt -- mit {\tt \textbackslash
label} und {\tt \textbackslash ref} gearbeitet. So ist z.B. die Gleichung
\ref{eq:planck} grade die Planck'sche Strahlungsformel.
\begin{equation}
\label{eq:planck}
U(\nu, T) = \frac{8 \pi h\nu^3}{c^3} \frac{1}{e^{h\nu/kT} - 1}
\end{equation}
```

Um Querverweise zu erzeugen wird – wie gewohnt – mit \label und \ref gearbeitet. So ist z.B. die Gleichung 37 grade die Planck'sche Strahlungsformel.

$$U(\nu, T) = \frac{8\pi h\nu^3}{c^3} \frac{1}{e^{h\nu/kT} - 1}$$
 (37)

\label bei mehrzeiligen Ausdrücken

- Bei mehrzeiligen Ausdrücken kann natürlich jede Zeile einzeln 'gelabelt' und referenziert werden.
- Das Label muss vor dem jeweiligen Zeilenumbruch stehen.

\label bei mehrzeiligen

Ausdrücken

```
\begin{align}
V &= V_0 + \Delta V \label{eq:eins}\\
&= V_0 + V_0\cdot \gamma_0\cdot \Delta T \label{eq:zwei}\\
&= V_0(1 + \gamma_0 [T - T_0]), \quad \text{mit}\quad \gamma_0 = \frac{1}{T_0}, \quad (T_0 \text{ in K}) \label{eq:drei}
\end{align}
Das ist Label \ref{eq:eins} und das ist Label \ref{eq:zwei} und das ist
Label \ref{eq:drei}.
```

$$V = V_0 + \Delta V$$

$$= V_0 + V_0 \cdot \gamma_0 \cdot \Delta T$$

$$= V_0 (1 + \gamma_0 [T - T_0]), \quad \text{mit} \quad \gamma_0 = \frac{1}{T_0}, \quad (T_0 \text{ in K})$$
(38)
$$(39)$$

Das ist Label 38 und das ist Label 39 und das ist Label 40.

Aufgabe

• Schlagen Sie komplizierte Formeln vor damit wir die gemeinsam erarbeiten können.