Fachprüfung

Signal- und Systemtheorie

17. März 2006

Prüfer: Prof. Dr. P. Pogatzki

Bearbeitungszeit: 2 Stunden Hilfsmittel: Taschenrechner, Formelblatt (2 DIN A4-Seiten)

Name:
MatrNr.:
Unterschrift:

Punkte								
Aufgabe	.1	.2	.3	.4	.5	.6	.7	Summe
1.								
2.								
3.								
4.								
Punkte gesamt								

Note: ECTS: 1. Prüfer 2. Prü	Note:	ECTS:	1. Prüfer	2. Prüfe
------------------------------	-------	-------	-----------	----------

Eingesehen am: Unterschrift:

Aufgabe 1 (24 Punkte)

Gegeben ist das Signal

$$s(t) = j \cdot (1 - \sin(2\pi t)) \cdot si(\pi t)$$

Aufgabe 1.1 (6 Punkte)

Zerlegen Sie das Signal s(t) in seinen geraden Anteil $s_{\text{even}}(t)$ und in seinen ungeraden Anteil $s_{\text{odd}}(t)$.

Aufgabe 1.2 (8 Punkte)

Bestimmen Sie die Spektren $S_{\text{even}}(f)$ und $S_{\text{odd}}(f)$ der Signale $s_{\text{even}}(t)$ und $s_{\text{odd}}(t)$ mit

$$s_{even}(t) \circ - - \bullet S_{even}(f)$$

$$S_{odd}(t) \circ - - \bullet S_{odd}(f)$$
!

Aufgabe 1.3 (6 Punkte)

Skizzieren Sie unter Angabe charakteristischer Werte das Spektrum

$$S(f) = S_{even}(f) + S_{odd}(f)$$

Aufgabe 1.4 (6 Punkte)

Zeigen Sie anhand des Spektrums S(f), daß die Signale $s_{even}(t)$ und $s_{odd}(t)$ orthogonal sind. **Hinweis**: Verwenden Sie $S_{even}(f) \cdot S_{odd}(f)$ zur Lösung

Aufgabe 2 (24 Punkte)

Gegeben ist das zeitbegrenzte Signal s(t) mit

$$s(t) = \begin{cases} \sin(\pi t) & -1 \le t \le +1 \\ 0 & sonst \end{cases}$$

Aufgabe 2.1 (2 Punkte)

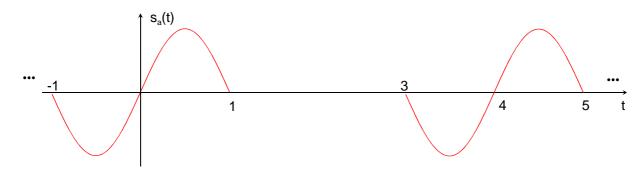
Skizzieren Sie unter Angabe charakteristischer Werte die Zeitfunktion s(t)!

Aufgabe 2.2 (6 Punkte)

Berechnen Sie das Spektrum S(f) des Signals s(t)! Wenden Sie dabei die Theoreme der Fourier-Transformation an.

Aufgabe 2.3 (10 Punkte)

Mit Hilfe von **Abtastung im Frequenzbereich** soll aus s(t) die nachstehende periodische Zeitfunktion $s_a(t)$ gewonnen werden.



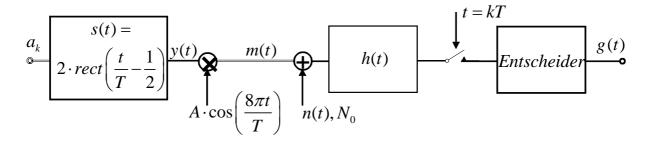
Ermitteln Sie die notwendige "Abtastrate" f_a im Frequenzbereich! Welches Spektrum $S_a(f)$ ergibt sich?

Aufgabe 2.4 (6 Punkte)

Das Spektrum S(f) wird nun mit der "Rate" $f_a\!\!=\!\!0,\!5$ abgetastet. Welche periodische Zeitfunktion ergibt sich dann?

Aufgabe 3 (26 Punkte)

Das binäre Datensignal $a_k = \frac{1}{2} \Big(1 + \Big(-1 \Big)^k \Big) \cdot \delta \Big(t - kT \Big)$ soll über die folgende Strecke mit der Rate r=1/T übertragen werden.



Aufgabe 3.1 (4 Punkte)

Bestimmen und skizzieren Sie das Ausgangssignal y(t) des Sendeformfilters s(t)!

Aufgabe 3.2 (4 Punkte)

Bestimmen und skizzieren Sie das modulierte Signal m(t)!

Aufgabe 3.3 (6 Punkte)

Bestimmen Sie die Amplitude des Trägers A so, daß die Energie eines Sendeimpulses m(t) der Energie des Signals s(t) entspricht.

Aufgabe 3.4 (6 Punkte)

Der Kanal wird nun additiv durch Weißes Rauschen mit der Rauschleistungsdichte N_0 gestört. Als Empfänger soll ein **Matched Filter** mit der Stoßantwort h(t) verwendet werden. Berechnen Sie die Stoßantwort h(t), wenn als Abtastzeitpunkt T gewählt wird!

Aufgabe 3.5 (6 Punkte)

Berechnen Sie die Rauschleistungsdichte am Ausgang des Matched Filters!

Aufgabe 4 (24 Punkte)

Es sollen einige Eigenschaften der Hilbert-Transformation untersucht werden.

Aufgabe 4.1 (6 Punkte)

Bestimmen Sie die Hilbert-Transformierte s₂(t) des Signals s₁(t)!

$$s_2(t) = \mathcal{H}\left\{s_1(t)\right\} \text{ mit } s_1(t) = \sin(2\pi f_0 t)$$

Hinweis: Führen Sie die Berechnung im Frequenzbereich durch!

Aufgabe 4.2 (8 Punkte)

Bestimmen Sie nun die Hilbert-Transformierte $s_3(t)$ des Signals $s_2(t)$. Vergleichen Sie $s_3(t)$ mit $s_1(t)!$ Welcher Zusammenhang ergibt sich?

Hinweis: Führen Sie die Berechnung im Frequenzbereich durch!

Aufgabe 4.3 (10 Punkte)

Der ideale Hilbert-Transformator zeigt die Stoßantwort

$$h(t) = \begin{cases} \frac{1}{\pi t} & t \neq 0 \\ 0 & t = 0 \end{cases}$$

Bestimmen Sie die Hilbert-Transformierte des Signals s(t) = rect(t) in dem Sie s(t) mit h(t) falten!

Hinweis: Berechnen Sie die Faltung im Zeitbereich, es gilt: $\int \frac{dx}{x} = \ln |x|$